
Unidad II: Programación Funcional

2.1. El tipo de datos

Python como varios otros lenguajes modernos como ser ruby, scala, etc., tiene

influencia del paradigma funcional. No vamos acá a enseñar el paradigma

funcional, pero sí sucede que varias de estas ideas están relacionadas con

la manipulación de estructuras de datos contenedoras, como las listas,

diccionarios, sets, etc.

Entonces en esta sección vamos a ver algunas ideas que, luego de entenderlas

aplicadas sobre las colecciones, podremos utilizarlas luego para modelar cualquier

problema. Y tendremos un conjunto de "herramientas" para pensar soluciones a

problemas.

En general estas ideas llevan a combinar el paradigma estructurado y objetos con

la simplicidad y legibilidad del paradigma funcional y declarativo.

2.2. Funciones

En general las funciones que veníamos viendo hasta el momento se

denominan funciones de primer nivel. Porque existe la idea de funciones de orden

superior. Que se refiere a funciones que:

 Reciben otra función como uno o varios parámetro/s.

 O bien retornan otra función como resultado.

Y claro, se llaman de orden superior porque operan sobre funciones. El dominio o

la imagen de estas funciones son funciones.

Veamos un ejemplo. Empezamos por uno simple, para no decir bastante "pavo",

porque no es justamente para lo que uno usaría estas funciones realmente.

Supongamos que tenemos una función que sirve para "saludar". Símplemente

hace un print.

2.3. Intervalos

Funciones devuelven siempre el mismo valor

 Los lenguajes funcionales puros tienen la propiedad de transparencia referencial

 Como consecuencia, en programación funcional, una función siempre devuelve el

mismo valor cuando se le llama con los mismos parámetros

 Las funciones no modifican ningún estado, no acceden a ninguna variable ni objeto

global y modifican su valor

Diferencia entre declaración y modificación de variables

 En programación funcional pura una vez declarada una variable no se puede modificar

su valor

 En algunos lenguajes de programación (como Scala) este concepto se refuerza

definiendo la variable como inmutable (con la directiva val).

 En programación imperativa es habitual modificar el valor de una variable en distintos

pasos de ejecución

2.4. Operadores

 En programación declarativa sólo existen valores, no hay referencias.

 La distinción entre valores y referencias es fundamental, sin embargo, en la

programación imperativa.

Diferencia entre valor y referencia

 Cuando se realiza una asignación de un valor a una variable debemos considerar que

estamos dando un nombre a un objeto matemático que no puede ser modificado o que

estamos copiando el valor en la variable.

Por ejemplo, en Java, los tipos de datos primitivos son valores. Las asignaciones

valores de estos tipos a variables realizan copias de valores:

 En la variable a se copia el valor 4 y en las variables b y c se copia el valor 2. No hay

forma de modificar (mutar) esos valores. Podríamos cambiar las variables guardando

en ella otros valores, pero los valores propiamente dichos son inmutables. En la última

instrucción modificamos el valor de la variable b, pero el valor de la variable c sigue

siendo 2.

Los tipos de datos cuyos valores son inmutables y sus asignaciones tienen una

semántica de copia reciben el nombre de tipos de valor (value types en inglés).

 Los tipos de referencia son tipos de datos mutables en los que la asignación funciona

con semántica de referencia.

Por ejemplo, cualquier objeto en Java tiene una semántica de referencia. Cuando

asignamos un objeto a una variable, estamos guardando en la variable una referencia

al objeto.

2.5. Aplicaciones de las listas

En Scheme todos los datos compuestos se construyen a partir de las parejas. En

concreto las listas se definen de una forma recursiva muy elegante como

http://docs.oracle.com/javase/tutorial/java/nutsandbolts/datatypes.html

secuencias de parejas. Esta característica se remonta al origen del LISP en el que

John McCarthy definió el concepto de S-expression e introdujo la notación del "."

para definir una pareja.

2.6. Árboles

Clase de la asignatura Lenguajes y Paradigmas de Programación de Ingeniería

Informática.

En el segundo vídeo se explican algunos algoritmos recursivos en el lenguaje

de programación funcional Scheme que trabajan sobre árboles binarios. En

concreto la obtención de una lista con sus elementos y la búsqueda en un árbol

binario ordenado.

En este tercer vídeo se explican las operaciones de inserción en árboles

binarios ordenados desde el punto de vista de la programación funcional. Se

incluyen ejemplos y demostraciones con el lenguaje de programación Scheme.

En el útimo vídeo se explican dos versiones del algoritmo recursivo que obtiene

la lista de elementos de un árbol genérico. Los algoritmos se realizan con el

paradigma de programación funcional, utilizando en concreto el lenguaje de

programación Scheme.

