Unidad II: Programacién Funcional

2.1. El tipo de datos

Python como varios otros lenguajes modernos como ser ruby, scala, etc., tiene
influencia del paradigma funcional. No vamos acd a ensefiar el paradigma
funcional, pero si sucede que varias de estas ideas estan relacionadas con
la manipulacion de estructuras de datos contenedoras, como las listas,

diccionarios, sets, etc.

Entonces en esta seccién vamos a ver algunas ideas que, luego de entenderlas
aplicadas sobre las colecciones, podremos utilizarlas luego para modelar cualquier
problema. Y tendremos un conjunto de "herramientas" para pensar soluciones a

problemas.

En general estas ideas llevan a combinar el paradigma estructurado y objetos con

la simplicidad y legibilidad del paradigma funcional y declarativo.

2.2. Funciones

En general las funciones que veniamos viendo hasta el momento se
denominan funciones de primer nivel. Porque existe la idea de funciones de orden

superior. Que se refiere a funciones que:

= Reciben otra funcién como uno o varios parametro/s.

= O bien retornan otra funcion como resultado.

Y claro, se llaman de orden superior porque operan sobre funciones. EI dominio o

la imagen de estas funciones son funciones.

Veamos un ejemplo. Empezamos por uno simple, para no decir bastante "pavo",



porque no es justamente para lo que uno usaria estas funciones realmente.
Supongamos que tenemos una funcidon que sirve para "saludar'. Simplemente

hace un print.

2.3. Intervalos

Funciones devuelven siempre el mismo valor

e Los lenguajes funcionales puros tienen la propiedad de transparencia referencial

e« Como consecuencia, en programacion funcional, una funcién siempre devuelve el
mismo valor cuando se le llama con los mismos parametros

e Las funciones no modifican ningun estado, no acceden a ninguna variable ni objeto
global y modifican su valor

Diferencia entre declaracion y modificacion de variables

e En programacién funcional pura una vez declarada una variable no se puede modificar
su valor

e En algunos lenguajes de programacion (como Scala) este concepto se refuerza
definiendo la variable como inmutable (con la directiva val).

e En programacién imperativa es habitual modificar el valor de una variable en distintos
pasos de ejecucion

2.4. Operadores

e En programacion declarativa sélo existen valores, no hay referencias.

e Ladistincion entre valores y referencias es fundamental, sin embargo, en la
programacioén imperativa.



Diferencia entre valor y referencia

e Cuando se realiza una asignaciéon de un valor a una variable debemos considerar que
estamos dando un nombre a un objeto matematico que no puede ser modificado o que
estamos copiando el valor en la variable.

Por ejemplo, en Java, los tipos de datos primitivos son valores. Las asignaciones
valores de estos tipos a variables realizan copias de valores:

e Enlavariable a se copia el valor 4 y en las variables b y ¢ se copia el valor 2. No hay
forma de modificar (mutar) esos valores. Podriamos cambiar las variables guardando
en ella otros valores, pero los valores propiamente dichos son inmutables. En la dltima
instruccién modificamos el valor de la variable b, pero el valor de la variable c sigue
siendo 2.

Los tipos de datos cuyos valores son inmutables y sus asignaciones tienen una
semantica de copia reciben el nombre de tipos de valor (value types en inglés).

e Los tipos de referencia son tipos de datos mutables en los que la asignacién funciona
con semantica de referencia.

Por ejemplo, cualquier objeto en Java tiene una semantica de referencia. Cuando
asignamos un objeto a una variable, estamos guardando en la variable una referencia
al objeto.

2.5. Aplicaciones de las listas

En Scheme todos los datos compuestos se construyen a partir de las parejas. En

concreto las listas se definen de una forma recursiva muy elegante como


http://docs.oracle.com/javase/tutorial/java/nutsandbolts/datatypes.html

secuencias de parejas. Esta caracteristica se remonta al origen del LISP en el que
John McCarthy definié el concepto de S-expression e introdujo la notacion del "."

para definir una pareja.
2.6. Arboles

Clase de la asignatura Lenguajes y Paradigmas de Programacion de Ingenieria

Informatica.

En el segundo video se explican algunos algoritmos recursivos en el lenguaje
de programacion funcional Scheme que trabajan sobre arboles binarios. En
concreto la obtencién de una lista con sus elementos y la busqueda en un arbol

binario ordenado.

En este tercer video se explican las operaciones de insercidbn en arboles
binarios ordenados desde el punto de vista de la programaciéon funcional. Se

incluyen ejemplos y demostraciones con el lenguaje de programacion Scheme.

En el utimo video se explican dos versiones del algoritmo recursivo que obtiene
la lista de elementos de un arbol genérico. Los algoritmos se realizan con el
paradigma de programacion funcional, utilizando en concreto el lenguaje de

programacion Scheme.



